Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(40): 27764-27771, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37731833

RESUMO

Side-chain-functionalized aliphatic polyesters are promising as functional biodegradable polymers. We have investigated ring-opening reactions of γ-carbonyl-substituted ε-caprolactones (gCCLs) to obtain poly(ε-caprolactone) (PCL) analogues. Organic catalysts and Sn(Oct)2 often used for the ring-opening polymerization (ROP) of ε-caprolactone (CL) have been explored to find the conditions for the formation of polymeric products of gCCLs. We confirmed the consumption of gCCLs in all catalyzed reactions. However, chain propagation hardly occurs, as the propagating species are preferentially transformed to α-substituted five-membered lactones when the substituents are linked by ester or not sterically hindered. Intramolecular cyclization to form thermodynamically stable five-membered lactones releases alcohols and amines, serving as nucleophiles for the subsequent ring opening of other gCCLs. Thus, apparent chain reactions are realized for continuous consumption of gCCLs. The reaction preference remains unchanged independent of the catalysts, although the reactions of the amide-linked gCCLs by acidic catalysts are slightly mitigated. Finally, copolymerization of CL and a gCCL catalyzed by diphenyl phosphate has been investigated, which enables the chain propagation reaction to yield the linear oligomers of PCL analogues containing up to 16 mol% of gCCL units. This study contributes to understanding the chemistry of ring-opening reactions of substituted lactones for designing functional degradable polymers.

2.
Angew Chem Int Ed Engl ; 62(34): e202306274, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37338464

RESUMO

Tumor Necrosis Factor-α (TNF-α) is a cytokine that is normally produced by immune cells when fighting an infection. But, when too much TNF-α is produced as in autoimmune diseases, this leads to unwanted and persistent inflammation. Anti-TNF-α monoclonal antibodies have revolutionized the therapy of these disorders by blocking TNF-α and preventing its binding to TNF-α receptors, thus suppressing the inflammation. Herein, we propose an alternative in the form of molecularly imprinted polymer nanogels (MIP-NGs). MIP-NGs are synthetic antibodies obtained by nanomoulding the 3-dimensional shape and chemical functionalities of a desired target in a synthetic polymer. Using an in-house developed in silico rational approach, epitope peptides of TNF-α were generated and 'synthetic peptide antibodies' were prepared. The resultant MIP-NGs bind the template peptide and recombinant TNF-α with high affinity and selectivity, and can block the binding of TNF-α to its receptor. Consequently they were applied to neutralize pro-inflammatory TNF-α in the supernatant of human THP-1 macrophages, leading to a downregulation of the secretion of pro-inflammatory cytokines. Our results suggest that MIP-NGs, which are thermally and biochemically more stable and easier to manufacture than antibodies, and cost-effective, are very promising as next generation TNF-α inhibitors for the treatment of inflammatory diseases.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Humanos , Nanogéis , Fator de Necrose Tumoral alfa , Inibidores do Fator de Necrose Tumoral , Anticorpos/metabolismo , Peptídeos/farmacologia , Macrófagos/metabolismo , Inflamação/tratamento farmacológico , Impressão Molecular/métodos
3.
Nanoscale ; 15(6): 2860-2870, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36688734

RESUMO

Two-photon stereolithography (TPS) is an established additive fabrication technique allowing the voxel-by-voxel direct writing of even intricate 3D nano/microstructures via the polymerization of a photoresin. An obvious way to tune the chemical functionalities of such nano/microstructures is formulating a photoresin with the desired functional monomer(s). Unfortunately, this makes every photoresin "unique" in terms of viscosity and reactivity, thus requiring a tedious and often time-consuming optimization of its printing parameters. In this work, we describe a general approach for the chemical functionalization of TPS-written structures based on two commercial photoresins. Our strategy entailed the grafting of functional polymer layers via an innovative approach based on photoiniferter coupling to unreacted double bonds and photopolymerization. After writing woodpiles as 3D model structures, we demonstrated the viability of this approach by anchoring a photoiniferter via its photoinduced addition to the residual CC on the structure's surface triggered by green light. This in turn allowed for the blue light-mediated, surface-initiated photopolymerization of functional monomers. Molecularly imprinted polymer films were also easily synthesized by using the same approach on model honeycombs. The imprinted layers resulted in only a minimal increase in size with no effect on the geometrical features of the honeycombs. Overall, this strategy offers a general approach for the surface modification of TPS-written (meth)acrylic structures with a wide variety of functional polymers via photoiniferter polymerization.

4.
J Mater Chem B ; 10(35): 6808-6815, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35815816

RESUMO

This study proposes a chemical sensing approach for the selective detection of tropane alkaloid drugs based on an extended-gate-type organic field-effect transistor (OFET) functionalized with a molecularly imprinted polymer (MIP). From the viewpoint of pharmaceutical chemistry, the development of versatile chemical sensors to determine the enantiomeric purity of over-the-counter (OTC) tropane drugs is important because of their side effects and different pharmacological activities depending on their chirality. To this end, we newly designed an OFET sensor with an MIP (MIP-OFET) as the recognition element for tropane drugs based on a high complementarity among a template (i.e., (S)-hyoscyamine) and functional monomers such as N-isopropylacrylamide and 2,2-dimethyl-4-pentenoic acid. Indeed, the MIP optimized by density functional theory (DFT) has succeeded in the sensitive and selective detection of (S)-hyoscyamine (as low as 1 µM) by the combination of the OFET with highly selective recognition sites in the MIP. The MIP-OFET was further applied to determine the enantiomeric excess (ee) of commercially available (S)-hyoscyamine, and the linearity changes in the threshold voltages of the OFET corresponded to the % ee values of (S)-hyoscyamine. Overall, the validation with tropane alkaloids revealed the potential of the MIP combined with OFET as a chemical sensor chip for OTC drugs in real-world scenarios.


Assuntos
Hiosciamina , Impressão Molecular , Eletrodos , Polímeros Molecularmente Impressos , Medicamentos sem Prescrição , Tropanos
5.
Angew Chem Int Ed Engl ; 60(38): 20849-20857, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34296498

RESUMO

Molecularly imprinted polymers (MIPs) are tailor-made synthetic antibodies possessing specific binding cavities designed for a target molecule. Currently, MIPs for protein targets are synthesized by imprinting a short surface-exposed fragment of the protein, called epitope or antigenic determinant. However, finding the epitope par excellence that will yield a peptide "synthetic antibody" cross-reacting exclusively with the protein from which it is derived, is not easy. We propose a computer-based rational approach to unambiguously identify the "best" epitope candidate. Then, using Saturation Transfer Difference (STD) and WaterLOGSY NMR spectroscopies, we prove the existence of specific binding sites created by the imprinting of this peptide epitope in the MIP nanogel. The optimized MIP nanogel could bind the epitope and cognate protein with a high affinity and selectivity. The study was performed on Hepatitis A Virus Cell Receptor-1 protein, also known as KIM-1 and TIM-1, for its ubiquitous implication in numerous pathologies.

6.
ACS Biomater Sci Eng ; 7(2): 472-481, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400868

RESUMO

Polymers that are biocompatible and degradable are desired for tissue engineering approaches in the treatment of vascular diseases, especially for those involving small-diameter blood vessels. Herein, we report the compatibility of a newly developed glycerol-based aliphatic polycarbonate possessing simple methoxy side groups, named poly(5-methoxy-1,3-dioxan-2-one) (PMDO), with blood cells and plasma proteins as well as its susceptibility to hydrolysis. As a consequence of the organocatalytic ring-opening polymerization (ROP) of a methoxy-functionalized cyclic carbonate derived from glycerol, PMDO with a sufficiently high molecular weight (Mn 14 kg/mol) and a narrow distribution (D̵M 1.12) was obtained for evaluation as a bulk biomaterial. This study demonstrates for the first time the organocatalytic ROP of a glycerol-based cyclic carbonate in a controlled manner. Compared with the clinically applied aliphatic polycarbonate poly(trimethylene carbonate) (PTMC), PMDO inhibits platelet adhesion by 33% and denaturation of fibrinogen by 23%. Although the wettability of PMDO based on water contact angle was almost comparable to those of PTMC and poly(ethylene terephthalate), the reason for the inhibited platelet adhesion and protein denaturation appeared to be related to the presence of specific hydrated water formed in the hydrated polymer. The improved hydration of PMDO also enhanced the susceptibility to hydrolysis, with PMDO demonstrating a slightly higher hydrolytic property than PTMC. This simple glycerol-based aliphatic polycarbonate has the following benefits: bio-based characteristics of glycerol and improved blood compatibility and hydrolytic biodegradability stemming from moderate hydration of the methoxy side groups.


Assuntos
Glicerol , Polímeros , Carbonatos , Hidrólise , Cimento de Policarboxilato
7.
Chemistry ; 21(46): 16374-8, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26418579

RESUMO

Constrained aminols from oxazanorbornene derivatives have the geometrical features to be used as ß-turn inducers. Four different stereoisomers were prepared and spectroscopically characterized (MD calculations, NMR-titration and VT-NMR experiments). Temperature coefficients in DMSO are indicative for the existence of an intramolecular hydrogen bond. Chirooptical properties revealed a ß-turn arrangement of all the synthesized compounds, where, depending on the absolute configuration of the cyclopentane spacer, they can be labeled as left- or right-handed turns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...